ساختارهای نانو، نظیر ذرات نانو و نانو لوله ها، دارای نسبت سطح به حجم خیلی بالایی اند، بنابراین اجزای ایده آلی برای استفاده در کامپوزیت ها، واکنش های شیمیایی و ذخیره از انرژی هستند از آنجا که نانوساختارها خیلی کوچک اند، می توانند در ساخت سیستم هایی بکار برده شوند که چگالی المان خیلی بیشتری نسبت به انواع مقیاس های دیگر دارند بنابراین قطعات الکترون
قیمت فایل فقط 10,900 تومان
مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی
فهرست مطالب
عنوان صفحه
فهرست علائم. ر
فهرست جداول. ز
فهرست اشکال. س
چکیده 1
فصل اول.
مقدمه نانو. 3
1-1 مقدمه. 4
1-1-1 فناوری نانو. 4
1-2 معرفی نانولولههای كربنی. 5
1-2-1 ساختار نانو لولههای كربنی. 5
1-2-2 كشف نانولوله. 7
1-3 تاریخچه. 10
فصل دوم.
خواص و کاربردهای نانو لوله های کربنی. 14
2-1 مقدمه. 15
2-2 انواع نانولولههای كربنی. 16
2-2-1 نانولولهی كربنی تك دیواره (SWCNT) 16
2-2-2 نانولولهی كربنی چند دیواره (MWNT) 19
2-3 مشخصات ساختاری نانو لوله های کربنی. 21
2-3-1 ساختار یک نانو لوله تک دیواره 21
2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره 24
2-4 خواص نانو لوله های کربنی. 25
2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن. 29
2-4-1-1 مدول الاستیسیته. 29
2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک.. 33
2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها 36
2-5 کاربردهای نانو فناوری.. 39
2-5-1 کاربردهای نانولولههای كربنی. 40
2-5-1-1 كاربرد در ساختار مواد. 41
2-5-1-2 كاربردهای الكتریكی و مغناطیسی. 43
2-5-1-3 كاربردهای شیمیایی. 46
2-5-1-4 كاربردهای مكانیكی. 47
فصل سوم.
روش های سنتز نانو لوله های کربنی 55
3-1 فرایندهای تولید نانولوله های کربنی. 56
3-1-1 تخلیه از قوس الکتریکی. 56
3-1-2 تبخیر/ سایش لیزری.. 58
3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD) 59
3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD ) 61
3-1-5 رشد فاز بخار. 62
3-1-6 الکترولیز. 62
3-1-7 سنتز شعله. 63
3-1-8 خالص سازی نانولوله های كربنی. 63
3-2 تجهیزات.. 64
3-2-1 میكروسكوپ های الكترونی. 66
3-2-2 میكروسكوپ الكترونی عبوری (TEM) 67
3-2-3 میكروسكوپ الكترونی پیمایشی یا پویشی (SEM) 68
3-2-4 میكروسكوپ های پروب پیمایشگر (SPM) 70
3-2-4-1 میكروسكوپ های نیروی اتمی (AFM) 70
3-2-4-2 میكروسكوپ های تونل زنی پیمایشگر (STM) 71
فصل چهارم.
شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته. 73
4-1 مقدمه. 74
4-2 مواد در مقیاس نانو. 75
4-2-1 مواد محاسباتی. 75
4-2-2 مواد نانوساختار. 76
4-3 مبانی تئوری تحلیل مواد در مقیاس نانو. 77
4-3-1 چارچوب های تئوری در تحلیل مواد. 77
4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد. 77
4-4 روش های شبیه سازی.. 79
4-4-1 روش دینامیک مولکولی. 79
4-4-2 روش مونت کارلو. 80
4-4-3 روش محیط پیوسته. 80
4-4-4 مکانیک میکرو. 81
4-4-5 روش المان محدود (FEM) 81
4-4-6 محیط پیوسته مؤثر. 81
4-5 روش های مدلسازی نانو لوله های کربنی. 83
4-5-1 مدلهای مولکولی. 83
4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی) 83
4-5-1-2 روش اب انیشو. 86
4-5-1-3 روش تایت باندینگ.. 86
4-5-1-4 محدودیت های مدل های مولکولی. 87
4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها 87
4-5-2-1 مدل یاکوبسون. 88
4-5-2-2 مدل کوشی بورن. 89
4-5-2-3 مدل خرپایی. 89
4-5-2-4 مدل قاب فضایی. 92
4-6 محدوده کاربرد مدل محیط پیوسته. 95
4-6-1 کاربرد مدل پوسته پیوسته. 97
4-6-2 اثرات سازه نانولوله بر روی تغییر شکل. 97
4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله. 98
4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله. 99
4-6-5 محدودیتهای مدل پوسته پیوسته. 99
4-6-5-1 محدودیت تعاریف در پوسته پیوسته. 99
4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته. 99
4-6-6 کاربرد مدل تیر پیوسته 100
فصل پنجم.
مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی 102
5-1 مقدمه. 103
5-2 نیرو در دینامیک مولکولی. 104
5-2-1 نیروهای بین اتمی. 104
5-2-1-1 پتانسیلهای جفتی. 105
5-2-1-2 پتانسیلهای چندتایی. 109
5-2-2 میدانهای خارجی نیرو. 111
5-3 بررسی مدل های محیط پیوسته گذشته. 111
5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی. 113
5-4-1 مدل انرژی- معادل. 114
5-4-1-1 خصوصیات محوری نانولوله های کربنی تک دیواره 115
5-4-1-2 خصوصیات محیطی نانولوله های کربنی تک دیواره 124
5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS. 131
5-4-2-1 تکنیک عددی بر اساس المان محدود. 131
5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS. 141
5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB.. 155
5-4-3-1 مقدمه. 155
5-4-3-2 ماتریس الاستیسیته. 157
5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی. 158
5-4-3-4 تعیین و نگاشت المان. 158
5-4-3-5 ماتریس کرنش-جابجائی. 161
5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای.. 162
5-4-3-7 ماتریس سختی برای یک حلقه کربن. 163
5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه. 167
5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه. 168
فصل ششم.
نتایج 171
6-1 نتایج حاصل از مدل انرژی-معادل. 172
6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره 173
6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره 176
6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS. 181
6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [ 182
6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره 192
6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB.. 196
فصل هفتم.
نتیجه گیری و پیشنهادات 203
7-1 نتیجه گیری.. 204
7-2 پیشنهادات.. 206
فهرست مراجع 207
فهرست علائم
تعریف علائم اختصاری
SWCNTs : Single-Walled Carbon Nanotubes
MWCNTs : Multi-Walled Carbon Nanotubes
CNTs : Carbon Nano Tubes
MWNTs : Multi-Walled Nano Tubes
FED : Field Emission Devices
TEM : Transmission Electron Microscope
SEM : Scanning Electron Microscopy
CVD : Chemical Vapor Deposition
PECVD : Plasma Enhanced Chemical Vapor Deposition
SPM : Scanning Probe Microscopy
NEMs : Nano Electro Mechanical System
AFM : Atomic Force Microscopy
STM : Scanning Tunnelling Microscopy
FEM : Finite Element Modeling
ASME : American Society of Mechanical Engineers
RVE : Representative Volume Element
SLGS: Single-Layered Grephene Sheet
فهرست جداول
عنوان صفحه
جدول 4-1: اتفاقات مهم در توسعه مواد در 350 سال گذشته .......................................................................76
جدول 5-1: خصوصیات هندسی و الاستیک المان تیر.................................................................................135
جدول5-2 : پارامترهای اندرکنش واندر والس ...........................................................................................150
جدول6-1: اطلاعات مربوط به مش بندی المان محدود مدل قاب فضایی در نرم افزار ANSYS ...............184
جدول6-2 : مشخصات هندسی نانولوله های کربنی تک دیواره در هر سه مدل ...........................................185
جدول6-3 : داده ها برای مدول یانگ در هر سه مدل توسط نرم افزار ANSYS .......................................186
جدول6-4 : داده ها برای مدول برشی در هر سه مدل توسط نرم افزار ANSYS .......................................187
جدول6-5 : مقایسه نتایج مدول یانگ برای مقادیر مختلف ضخامت گزارش شده .......................................194
جدول 6-6 : مشخصات صفحات گرافیتی مدل شده با آرایش صندلی راحتی .............................................196
جدول 6-7 : مشخصات صفحات گرافیتی مدل شده با آرایش زیگزاگ .....................................................197
جدول 6-8 : مقایسه مقادیر E، G و به دست آمده از مدل های تدوین شده در این تحقیق با نتایج موجود در منابع ..........................................................................................................................................................202
فهرست اشکال
عنوان صفحه
شکل 1-1 : میکروگراف TEMکه لایه های نانو لوله کربنی چند دیواره را نشان می دهد ...............................4
شکل 1-2 : اشکال متفاوت مواد با پایه کربن ..................................................................................................6
شکل 1-3 : تصویر گرفته شده TEM که فلورن هایی کپسول شده به صورت نانولوله های کربنی تک دیواره را نشان می دهد .................................................................................................................................................7
شکل 1-4 : تصویر TEM از نانولوله کربنی دو دیواره که فاصله دو دیواره در عکس TEM nm 36/0 می باشد ..............................................................................................................................................................8
شکل 1-5 : تصویر TEM گرفته شده از نانوپیپاد .........................................................................................8
شکل 2-1 : تصویر نانو لوله های تک دیواره و چند دیواره کشف شده توسط ایجیما در سال 1991................15
شکل 2-2 : انواع نانولوله: (الف) ورق گرافیتی (ب) نانولوله زیگزاگ (0، 12) (ج) نانولوله زیگزاگ (6، 6) (د) نانولوله کایرال (2، 10) ..........................................................................................................................17
شکل 2-3 : شبکه شش گوشه ای اتم های کربن ..........................................................................................18
شکل2-4 : تصویر شماتیک شبکه شش گوشه ای ورق گرافیتی، شامل تعریف پارامترهای ساختاری پایه و توصیف اشکال نانولوله های کربنی تک دیواره ............................................................................................19
شکل 2-5 : شکل شماتیک یک نانولوله کربنی چند دیواره MWCNTs ...................................................20
شکل 2-6 : نانو پیپاد ....................................................................................................................................21
شکل 2-7 : شکل شماتیک یک نانو لوله که از حلقه ها شش ضلعی کربنی تشکیل شده است .....................22
شکل2-8 : تصویر شماتیک یک حلقه شش ضلعی کربنی و پیوندهای مربوطه...............................................22
شکل 2-9 : تصویر شماتیک شبکه کربن در سلول های شش ضلعی .............................................................23
شکل 2-10: توضیح بردار لوله کردن نانو لوله، بصورت ترکیب خطی از بردارهای پایه b , a .....................23
شکل2-11: نمونه های نانولوله های صندلی راحتی، زیگزاگ و کایرال و انتها بسته آنها که مرتبط است با تنوع فلورن ها ......................................................................................................................................................24
شکل 2-12: تصویر سطح مقطع یک نانو لوله ...............................................................................................25
شکل 2-13: مراحل آزاد سازی نانو لوله کربن ............................................................................................33
شکل 2-14 : مراحل کمانش و تبدیل پیوندها در یک نانو لوله تحت بار فشاری ............................................36
شکل 2-15: نحوه ایجاد و رشد نقایص تحت بار کششی الف: جریان پلاستیک، ب: شکست ترد (در اثر ایجاد نقایص پنج و هفت ضلعی) ج: گردنی شدن نانو لوله در اثر اعمال بار کششی .................................................38
شکل 2-16: تصویر میکروسکوپ الکترونی پیمایشی SEM اعمال بار کششی بر یک نانو لوله .....................39
شکل 2-17: شکل شماتیک یک نانولوله کربنی به عنوان نوک AFM. .......................................................47
شکل2-18 : نانودنده ها ...............................................................................................................................50
شکل 3- 1: آزمایش تخلیه قوس ..................................................................................................................56
شکل 3-2 : دستگاه تبخیر/سایش لیزری .......................................................................................................58
شکل 3-3 : شماتیک ابزار CVD ...............................................................................................................60
شکل 3-4 : میکروگرافی که صاف و مستقیم بودن MWCNTs را که به روش PECVD رشد یافته نشان می دهد .......................................................................................................................................................62
شکل 3-5 : میکروگراف که کنترل بر روی نانو لوله ها را نشان می دهد: (الف) 40–50 nmو (ب). 200–300 nm ...................................................................................................................................................62
شکل 3-6 : نانولوله کربنی MWCNT به عنوان تیرک AFM ..................................................................71
شکل 4-1 : تصویر شماتیک ارتباط بین زمان و مقیاس طول روشهای شبیه سازی چند مقیاسی .......................75
شکل 4-2 : مدل سازی موقعیت ذرات در محیط پیوسته ................................................................................77
شکل 4-3 : محدوده طول و مقیاس زمان مربوط به روشهای شبیه سازی متداول ............................................82
شکل 4-4 : تصویر تلاقی ابزار اندازه گیری و روش های شبیه سازی .............................................................82
شکل 4-5 : تصویر شماتیک وابستگی درونی روش ها و اصل اعتبار روش ....................................................83
شکل 4-6 : تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه ...................................................85
شکل 4-7 : موقعیت نسبی اتمها در شبکه کربنی برای بدست آوردن طول پیوندها در نانولوله ........................85
شکل 4- 8 : المان حجم معرف در نانو لوله کربنی ........................................................................................90
شکل 4- 9 : مدلسازی محیط پیوسته معادل ...................................................................................................90
شکل 4- 10 : المان حجم معرف برای مدلهای شیمیایی، خرپایی و محیط پیوسته ...........................................92
شكل4-11 : تصویر شماتیک تغییر شکل المان حجم معرف .........................................................................92
شکل4-12 : شبیه سازی نانو لوله بصورت یک قاب فضایی ..........................................................................93
شکل4- 13 : اندرکنشهای بین اتمی در مکانیک مولکولی ............................................................................93
شکل4-14: شکل شماتیک یک صفحه شبکه ای کربن شامل اتم های کربن در چیدمان های شش گوشه ای.96
شکل 4-15: شکل شماتیک گروهای مختلف نانولوله کربنی .........................................................................97
شکل 4-16: وابستگی کرنش بحرانی نانولوله به شعاع با ضخامت های تخمینی متفاوت .................................98
شکل 5-1: نمایش نیرو وپتانسیل لنارد-جونز برحسب فاصله بین اتمی r ......................................................107
شکل 5-2 : نمایش نیرو وپتانسیل مورس برحسب فاصله بین اتمی r ............................................................108
شکل 5-3 : تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه ................................................109
شکل5-4 : فعل و انفعالات بین اتمی در مکانیک مولکولی .........................................................................115
شکل5-5 : شکل شماتیک (الف) یک نانولوله صندلی راحتی (ب) یک نانولوله زیگزاگ ..........................116
شکل5-6 : شکل شماتیک یک نانولوله صندلی راحتی (الف) واحد شش گوشه ای (ب) نیرو های توزیع شده روی پیوند b .............................................................................................................................................117
شکل5-7 : شکل شماتیک یک نانولوله زیگزاگ (الف) واحد شش گوشه ای (ب) نیرو های توزیع شده روی پیوند b ......................................................................................................................................................120
شکل5– 8 : تصویر شماتیک توزیع نیروها برای یک نانولوله کربنی تک دیواره .........................................122
شکل 5-9 : تصویر شماتیک توزیع نیرو در یک نانولوله کربنی زیگزاگ ....................................................124
شکل5- 10: تصویر شماتیک (الف) نانولوله کربنی Armchair، (ب) مدل تحلیلی برای تراکم در جهت محیطی (ج) روابط هندسی .........................................................................................................................125
شکل 5-11: تصویر شماتیک (الف) نانولوله کربنیZigzag(ب)مدل تحلیلی برای فشار در جهت محیطی...129
شکل 5-12: تعادل مکانیک مولکولی و مکانیک ساختاری برای تعاملات کووالانس و غیر کووالانس بین اتم های کربن (الف) مدل مکانیک مولکولی (ب) مدل مکانیک ساختاری .......................................................132
شکل 5-13: منحنی پتانسیل لنارد-جونز و نیروی واندروالس نسبت به فاصله اتمی .......................................133
شکل5-14 : رابطه نیرو (بین پیوند کربن-کربن) و کرنش بر اساس پتانسیل بهبود یافته مورس ......................137
شکل 5-15 :استفاده از المان میله خرپایی برای شبیه سازی نیروهای واندروالس .........................................138
شکل5-16 : منحنی نیرو-جابجائی غیر خطی میله خرپایی ...........................................................................139
شکل 5-17: تغییرات سختی فنر نسبت به جابجائی بین اتمی ........................................................................140
شکل 5-18: مدل های المان محدود ایجاد شده برای اشکال مختلف نانولوله (الف) :صندلی راحتی (7،7) (ب):زیگزاگ(7،0) (ج): نانولوله دودیواره (5،5) و (10،10) ......................................................................140
شکل5-19 : المان های نماینده برای مدل های شیمیایی ، خرپایی و محیط پیوسته ........................................142
شکل 5-20 : شبیه سازی نانولوله های کربنی تک دیواره به عنوان ساختار قاب فضایی ...............................144
شکل5-21 : شرایط مرزی و بارگذاری بر روی مدل المان محدود نانو لوله کربنی تک دیواره: (الف) زیگزاگ (7،0) ، (ب) صندلی راحتی (7،7) ، (ج) زیگزاگ (0،10) ، (د) صندلی راحتی (7،7) .................................145
شکل5-22 : شرایط مرزی و بارگذاری بر روی مدل المان محدود نانو لوله کربنی چند دیواره: (الف) مجموعه 4 دیواره نانولوله زیگزاگ (5،0) (14،0) (23،0) (32،0) تحت کشش خالص ، (ب) مجموعه 4 دیواره نانولوله صندلی راحتی (5،5) (10،10) (15،15) (20،20) تحت پیچش خالص .........................................................145
شکل5-23 : نانولوله تحت کشش ..............................................................................................................147
شکل5-24 : یک نانولوله کربنی تک دیواره شبیه سازی شده به عنوان ساختار قاب فضایی ..........................148
شکل5-25 : شکل شماتیک اتمهای کربن و پیوند های کربن متصل کننده آنها در ورق گرافیت .................148
شکل 5-26 : نمودار Eωa بر حسب فاصله بین اتمی ρa ............................................................................150
شکل 5-27 : شکل شماتیک شش گوشه ای کربن و اتم های کربن و پیوندهای کواالانس و واندروالس .....151
شکل5-28 : شکل شماتیک شش گوشه ای کربن که تنها پیوندهای کووالانس را نشان می دهد .................151
شکل5-29 : سه حالت بارگذاری برای معادل سازی انرژی کرنشی مدل ها .................................................152
شکل5-30 : شکل شماتیک از شش گوشه ای کربن و نیرو های غیر پیوندی ..............................................154
شکل5-31 : شکل شماتیک شش گوشه ای کربن با در نظر گرفتن 9 پیوند واندروالس بین اتم های کربن ...154
شکل5-32: یک مدل جزئی از ساختار شبکه ای رول نشده که نانولوله کربنی را شکل می دهد. شش ضلعی های متساوی الاضلاع نماینده حلقه های شش ضلعی پیوند های کووالانس کربن می باشد، که هر رأس آن محل قرار گیری اتم کربن می باشد ....................................................................................................................156
شکل5-33 : شکل یک حلقه کربن به صورت یک شش ضلعی متساوی الاضلاع و هر اتم کربن به عنوان گره با نامگذاری قراردادی ....................................................................................................................................159
شکل 5-34 : شکل یک ذوزنقه متساوی الساقین از حلقه شش گوشه ای کربن (الف) در فضای x و y (ب) شکل نگاشت یافته در فضای r و s ..............................................................................................................159
شکل 5-35 : المان ذوزنقه ای هم اندازه و مشابه المان اصلی ABCF که در صفحه به اندازه زاویه θ چرخیده است ..........................................................................................................................................................163
شکل 5-36 : شش حالت ممکن ذوزنقه شکل گرفته در شش گوشه ای کربن ABCDEF. هر ذوزنقه یک شکل دوران یافته از دیگری است ..............................................................................................................166
شکل 5-37 : حلقه شش گوشه ای کربن ABCDEF که تشکیل شده از دو ذوزنقه ABCD و DEFC، دراین شکل نشان داده شده که در این حالت تنها CF ایجاد شده است .......................................................167
شکل 5-38 : شکل شماتیک حلقه کربن شش گوشه ای به عنوان المان پایه صفحه گرافیتی ........................168
شکل 5-39 : پارامترهای هندسی ورق گرافیتی ............................................................................................169
شکل 5-40 : مدل ورق گرافیتی زیگزاگ.ورق گرافیتی تک لایه a)تحت کشش b)تحت بار های مماسی..170
شکل6-1: شکل شماتیک (الف) یک نانولوله صندلی راحتی (ب) یک نانولوله زیگزاگ ...........................172
شکل 6-2 : تغییرات مدول یانگ در جهت محوری E................................................................................173
شکل 6-3 : تغییرات مدول برشی G ...........................................................................................................174
شکل 6-4 : تغییرات مدول یانگ در جهت محوری E نانولوله های کربنی با قطر یکسان، نسبت به ضخامت دیواره t .....................................................................................................................................................174
شکل 6-5 : تغییرات مدول برشی نانولوله های کربنی با قطر یکسان نسبت به ضخامت دیواره t.....................175
شکل 6-6 : تغییرات نسبت پواسون .........................................................................................................175
شکل 6-7 : تغییرات مدول یانگ در جهت محیطی( Eθ) ..........................................................................176
شکل 6-8 : تغییرات مدول یانگ در جهت محیطی( Eθ) نانولوله های کربنی با قطر یکسان، نسبت به ضخامت دیواره t......................................................................................................................................................177
شکل 6-9 : تغییرات نسبت پواسون(νθz) ..................................................................................................177
شکل 6-10: مقایسه تغییرات مدول یانگ در جهت محوری E نسبت به قطر................................................178
شکل 6-11: مقایسه تغییرات مدول یانگ در جهت محیطی ( Eθ) نسبت به قطر..........................................179
شكل 6-12: مقایسه تغییرات مدول برشی نسبت به قطر...............................................................................179
شکل 6-13: مقایسه تغییرات نسبت پواسون(νθz) نانولوله های کربنی نسبت به قطر....................................180
شکل6-14: نمودار تنش-کرنش برای نانولوله کربنی صندلی راحتی............................................................181
شکل6-15: شکل شماتیک شش گوشه ای کربن همرا با تنها 6 پیوند کووالانس..........................................181
شکل6-16: شکل شماتیک شش گوشه ای کربن و اتم های کربن و6 پیوند کواالانس و6پیوند واندروالس..182
شکل6-17: شکل شماتیک شش گوشه ای کربن با در نظر گرفتن 9 پیوند واندروالس بین اتم های کربن.....182
شکل6-18: مش بندی المان محدود نانولوله های کربنی تک دیواره صندلی راحتی و زیگزاگ ..................183
شکل6-19: نانولوله های کربنی تک دیواره صندلی راحتی(12،12) و زیگزاگ(14،0) تحت تست کشش...184
شکل6-20 :کانتور تغییر شکل نانولوله های کربنی تک دیواره صندلی راحتی(12،12) تحت تست کشش....185
شکل6-21 : نانولوله های کربنی تک دیواره صندلی راحتی(12،12) تحت تست پیچش ..............................186
شکل6-22 : کانتور تغییر شکل نانولوله های کربنی تک دیواره صندلی راحتی(12،12) تحت تست پیچش ..187
شکل 6-23 : مقایسه تغییرات مدول یانگ نانولوله تک دیواره صندلی راحتی نسبت به قطر برای هر سه مدل اجزاء محدود .............................................................................................................................................188
شکل 6-24 : مقایسه تغییرات مدول یانگ نانولوله تک دیواره زیگزاگ نسبت به قطر برای هر سه مدل اجزاء محدود ......................................................................................................................................................188
شکل 6-25 : مقایسه تغییرات مدول برشی نانولوله تک دیواره صندلی راحتی نسبت به قطر برای هر سه مدل اجزاء محدود .............................................................................................................................................189
شکل 6-26 : مقایسه تغییرات مدول برشی نانولوله تک دیواره زیگزاگ نسبت به قطر برای هر سه مدل اجزاء محدود ......................................................................................................................................................190
شکل 6-27:مقایسه تغییرات نسبت پواسون نانولوله تک دیواره نسبت به قطر برای هر سه مدل اجزاء محدود.190
شکل 6-28 : مدل اجزاء محدود نانولوله تک دیواره (12و12) بعد از تست کشش ......................................191
شکل 6-29 : مدل اجزاء محدود نانولوله تک دیواره (12و12) بعد از تست پیچش ......................................192
شکل6-30 : شماتیک سه شکل نانولوله: مدل مولکولی، مدل ساختاری، و مدل معادل پیوسته ......................193
شکل6-31 : فاصله بین لایه های ورق گرافیتی ...........................................................................................193
شکل 6-32 : مقایسه مدول یانگ برای نانولوله کربنی (8،8) در ضخامت های مختلف با نتایج موجود در مراجع ..................................................................................................................................................................195
شکل 6-33 : پارامترهای هندسی ورق گرافیتی ............................................................................................196
شکل 6-34 : شکل شماتیک حلقه کربن شش گوشه ای به عنوان المان پایه صفحه گرافیتی.........................197
شکل 6-35 : مقایسه تغییرات مدول یانگ صفحه گرافیتی تک دیواره صندلی راحتی نسبت n, t............... 198
شکل 6-36 : مقایسه تغییرات مدول یانگ صفحه گرافیتی تک دیواره زیگزاگ نسبت n, t........................198
شکل 6-37 : مقایسه تغییرات مدول برشی صفحه گرافیتی تک دیواره صندلی راحتی نسبت n, t ..............199
شکل 6-38 : مقایسه تغییرات مدول برشی صفحه گرافیتی تک دیواره زیگزاگ نسبت n, t ......................199
شکل 6-39 : مقایسه تغییرات نسبت پواسون صفحه گرافیتی تک دیواره صندلی راحتی نسبت n.................200
شکل 6-40 : مقایسه تغییرات نسبت پواسون صفحه گرافیتی تک دیواره زیگزاگ نسبت n .......................200
چکیده
از آنجائیکه شرکت های بزرگ در رشته نانو فناوری مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند بیشتر توسعه یافته اند.
پیش از این بر اساس تحلیل های دینامیک مولکولی و اندرکنش های بین اتم ها، مدلهای محیط پیوسته، نظیر مدلهای خرپایی، مدلهای فنری، قاب فضایی، بمنظور مدلسازی نانولوله ها، معرفی شده اند. این مدلها، بدلیل فرضیاتی که برای ساده سازی در استفاده از آنها لحاظ شده اند، قادر نیستند رفتار شبکه کربنی در نانولوله های کربنی را بطور کامل پوشش دهند.
در این پایان نامه از ثوابت میدان نیرویی بین اتمها و انرژی کرنشی و پتانسیل های موجود برای شبیه سازی رفتار نیرو های بین اتمی استفاده شده و به بررسی و آنالیز رفتار نانولوله های کربنی از چند دیدگاه مختلف می پردازیم، و مدل های تدوین شده را به شرح زیر ارائه می نمائیم:
مدل های تدوین شده به منظور بررسی خصوصیات مکانیکی نانولوله کربنی تک دیواره بکار گرفته شده است. در روش انرژی- معادل، انرژی پتانسیل کل مجموعه و همچنین انرژی کرنشی نانو لوله کربنی تک دیواره بکار گرفته می شود. خصوصیات صفحه ای الاستیک برای نانو لوله های کربنی تک دیواره برای هر دو حالت صندلی راحتی و زیگزاگ در جهت های محوری و محیطی بدست آمده است.
در مدل اجزاء محدود بوسیله نرم افزار ANSYS ، به منظور انجام محاسبات عددی، نانو لوله کربنی با یک مدل ساختاری معادل جایگزین می شود.
در مدل اجزاء محدود سوم، كد عددی توسط نرم افزار MATLAB تدوین شده که از روش اجزاء محدود برای محاسبه ماتریس سختی برای یک حلقه شش ضلعی کربن، و تعمیم و روی هم گذاری آن برای محاسبه ماتریس سختی کل صفحه گرافیتی، استفاده شده است.
اثرات قطر و ضخامت دیواره بر روی رفتار مکانیکی هر دو نوع نانو لوله های کربنی تک دیواره و صفحه گرافیتی تک لایه مورد بررسی قرار گرفته است. مشاهده می شود که مدول الاستیک برای هر دو نوع نانو لوله های کربنی تک دیواره با افزایش قطر لوله بطور یکنواخت افزایش و با افزایش ضخامت نانولوله، کاهش می یابد. اما نسبت پواسون با افزایش قطر ،کاهش می یابد. همچنین منحنی تنش-کرنش برای نانولوله تک دیواره صندلی راحتی پیش بینی و تغییرات رفتار آنها مقایسه شده است. نشان داده شده که خصوصیات صفحه ای در جهت محیطی و محوری برای هر دو نوع نانو لوله کربنی و همچنین اثرات قطر و ضخامت دیواره نانو لوله کربنی بر روی آنها یکسان می باشد. نتایج به دست آمده در مدل های مختلف یکدیگر را تایید می کنند، و نشان می دهند که هر چه قطر نانو لوله افزایش یابد، خواص مکانیکی نانولوله های کربنی به سمت خواص ورقه گرافیتی میل می کند.
نتایج این تحقیق تطابق خوبی را با نتایج گزارش شده نشان می دهد.
واژه های کلیدی: نانولوله های کربنی ، خواص مکانیکی، محیط پیوسته ، تعادل- انرژی ، اجزاء محدود ، ورق گرافیتی تک لایه، ماتریس سختی.
فصل اول
مقدمه نانو
1-1 مقدمه
1-1-1 فناوری نانو
نانو فناوری عبارت ازآفرینش مواد، قطعات و سیستم های مفید با کنترل آنها در مقیاس طولی نانو متر و بهره برداری از خصوصیات و پدیده های جدید حاصله در آن مقیاس می باشد. به عبارت دیگر فناوری نانو، ایجاد چیدمانی دلخواه از اتم ها و مولکول ها و تولید مواد جدید با خواص مطلوب است. فناوری نانو، نقطه تلاقی اصول مهندسی، فیزیک، زیست شناسی، پزشکی و شیمی است و به عنوان ابزاری برای کاربرد این علوم و غنی سازی آنها در جهت ساخت عناصر کاملاً جدید عمل می کند.
از لحاظ ابعادی، یک نانو متر اندازه ای برابر 9-10 متر است (شکل 1-1) . این اندازه تقریباً چهار برابر قطر یک اتم منفرد می باشد.
شکل 1-1: میکروگراف [1]TEM که لایه های نانو لوله کربنی چند دیواره [2](MWCNTs)را نشان می دهد.
خصوصیات موجی (مکانیک کوانتومی) الکترونها در درون مواد و اندرکنشهای اتمی، بوسیله ی تغییرات مواد در مقیاس نانو متری، تحت تأثیر قرار می گیرند. با ایجاد ساختارهای نانو متری، کنترل خصوصیات اساسی مواد مانند دمای ذوب، رفتار مغناطیسی و حتی رنگ آنها، بدون تغییر ترکیب شیمیایی ممکن خواهد بود. به کارگیری این پتانسیل، باعث ایجاد محصولات و فناوری های جدید با کارایی بسیار بالا خواهد شد که قبلاً ممکن نبوده است. سازمان دهی سیستماتیک ماده در مقیاس طولی نانو متر، مشخصه کلیدی سیستم های زیستی است.
ساختارهای نانو، نظیر ذرات نانو و نانو لوله ها، دارای نسبت سطح به حجم خیلی بالایی اند، بنابراین اجزای ایده آلی برای استفاده در کامپوزیت ها، واکنش های شیمیایی و ذخیره از انرژی هستند. از آنجا که نانوساختارها خیلی کوچک اند، می توانند در ساخت سیستم هایی بکار برده شوند که چگالی المان خیلی بیشتری نسبت به انواع مقیاس های دیگر دارند. بنابراین قطعات الکترونیکی کوچک تر، ادوات سریع تر، عملکردهای پیچیده ترو مصرف بسیار کمتر انرژی را می توان با کنترل واکنش و پیچیدگی نانو ساختار، بطور همزمان بدست آورد.
در حال حاضر، نانو فناوری یک تکنولوژی توانمند است، اما این پتانسیل را دارد که تبدیل به یک تکنولوژی جایگزین شود. فناوری نانو نه یک فناوری جدید، بلکه نگرشی تازه به کلیه ی فناوری های موجود است و لذا روش های مبتنی بر آن، در اصل همان فناوری های قبلی هستند که در مقیاس نانو انجام می شوند.
مراکز علمی و دانشگاهی با آگاهی از توانایی های وقابلیت های نانو فناوری به تحقیق و پژوهش در این زمینه می پردارند. تفاوت هایی که در سال های اخیر در زمینه ی نانو بوجود آمده است، حاکی از افزایش رغبت به این حوزه می باشد. در گذشته، تحقیقات بر اساس علایق و تخصص های محقق پیش می رفت، اما اکنون اغلب کشورها دارای برنامه های مدون و راهبردی مشخص در این زمینه هستند و مراکز علمی و تحقیقاتی خود را مامور پیش برد این برنامه ها کرده اند.
1-2 معرفی نانولولههای كربنی
1-2-1 ساختار نانو لولههای كربنی
نانو لولههای كربنی [3](CNTs) یك نوع آلوتروپ كربن هستند كه اخیراً كشف شدهاند. آنها به شكل مولكول استوانهای هستند و خواص شگفت انگیزی دارند كه آنها را برای بكارگیری در بسیاری از كاربردهای نانوفناوری، الكترونیك، اپتیك و حوزههای دیگر علم مواد مناسب می سازد. آنها دارای استحكام خارق العادهای بوده، خواص الكتریكی منحصر به فردی دارند، و هادی كارآمدی برای حرارت هستند.
یك نانولوله عضوی از خانواده فلورن هاست، كه باكی بالها را نیز شامل میشود. فلورنها خوشهی بزرگی از اتمهای كربن در قالب یك قفس بسته میباشند و از ویژگی های خاصی برخوردارند كه پیش از این در هیچ تركیب دیگری یافت نشده بودند. بنابراین، فلورنها به طور كلی خانوادهای جالب توجه از تركیبها را تشكیل میدهند كه به طور قطع در كاربردها و فناوریهای آینده مورد استفاده وسیع قرار خواهند گرفت.
ساختارهای عجیب و غریب زیادی از فلورنها[4]، شامل: كروی منظم، مخروطی، لولهای و همچنین اشكال پیچیده و عجیب دیگر وجود دارد. در اینجا ما به توضیح مهمترین و شناخته شدهترین آنها میپرد از یم. ساختار باکی بال[5] در شكل كره و نانولوله به شكل استوانه است كه معمولاً لااقل یك سر آن با درپوش نیم كروی از ساختار باکی بال پوشیده شده است (شكل 1-2) .
شکل 1-2: اشکال متفاوت مواد با پایه کربن
نام آن از اندازهاش گرفته شده، زیرا قطر آن در ابعاد نانومتر (تقریباً 50000 برابر كوچكتر از قطر موی سر انسان) بوده و این در حالی است كه طول آن میتواند به بلندی چند میلیمتر برسد. طول بلند چندین میكرونی و قطر كوچك چند نانومتری آنها نسبت طول به قطر بسیار بزرگی را نتیجه میدهد. لذا میتوان آنها را تقریباً به صورت فلورنهای یك بعدی در نظر گرفت. بدین ترتیب انتظار میرود این مواد از خواص جالب الكترونیكی، مكانیكی و مولكولی ویژهای برخوردار باشند. مخصوصاً در اوایل، تمام مطالعات تئوری نانولولههای كربنی به بررسی اثر ساختار تقریباً یك بعدی آنها بر روی خواص مولكولی و الكترونیكیشان معطوف میشد.
نانولولهها در دو دستهی اصلی وجود دارند: نانولولههای تك دیواره [6](نانولوله ی کربنی تک دیوارهs) و نانو لولههای چند دیواره [7](MWNTs). نانولولههای تك دیواره را میتوان به صورت ورقههای بلند گرافیت در نظر گرفت كه به شكل استوانه پیچیده شدهاند. نسبت طول به قطر نانولولهها در حدود 1000 بوده و همانگونه كه قبلاً ذكر شد میتوان آنها را به عنوان ساختارهای تقریباً یك بعدی در نظر گرفت. نانولولهها مشابه گرافیت تماماً از هیبرید SP2 تشكیل شدهاند،. این ساختار هیبریدی، از هیبرید SP3 كه در الماس وجود دارد قویتر است و استحكام منحصر به فردی به این مولكولها میدهد. نانولولهها معمولاً تحت نیروهای واندروالس[8] به شكل ریسمان به هم میچسبند. تحت فشار زیاد، نانولولهها میتوانند با هم ممزوج و متصل شوند و این امكان به وجود میآید كه بتوان سیمهای به طول نامحدود و بسیار مستحكمی را تولید كرد.
1-2-2 كشف نانولوله
در سال 2006 مارك مونتیوكس[9] و ولادیمیر كوزنشف[10] در مقالهای در ژورنال كربن به بیان مبدأ و منشا جالب، و اغلب تحریف شدهی نانولولهها پرداختهاند. اغلب مقالات معروف و علمی، كشف لولههای نانومتری توخالی كربنی را به سومیوایجیما[11] از NEC در سال 1991 نسبت میدهند.
ولیكن تاریخ لولههای نانومتری كربن گرافیتی به گذشتهای دور در سال 1952 بر میگردد. در آن سال رادشكویچ[12] و لوكیانویچ[13] تصاویر واضحی از لولههای 50 نانومتری كربنی را در مجلهی روسی «شیمی فیزیكی» به چاپ رساندند. ممكن است نانولولههای كربنی حتی قبل از آن سال هم ساخته شده بودند ولی تا زمان اختراع TEM امكان مشاهدهی مستقیم این ساختارها فراهم نبوده است (اشکال 1-3، 4، 5) . دانشمندان در غرب متوجه این كشف نشده بودند زیرا به دلیل جنگ سرد، تبادل اطلاعاتی بین شرق و غرب بسیار ضعیف بود، و نیز مقاله به زبان روسی به چاپ رسیده بود.
شکل 1-3: تصویر گرفته شده TEM که فلورن هایی کپسول شده به صورت نانولوله های کربنی تک دیواره[14](SWCNTs) را نشان می دهد
شکل 1-4: تصویر TEM از نانولوله کربنی دو دیواره که فاصله دو دیواره در عکس TEM nm36/0 می باشد.
شکل 1-5: تصویر TEM گرفته شده از نانوپیپاد[15]
قبل از اولین تولید مصنوعی و یافتن فلورنهای كوچكتر C60 و C70 این باور وجود داشت كه این مولكولهای كروی بزرگ عموماً ناپایدار هستند. اما محاسبات چند دانشمند روسی نشان داد كه مولكول C60 در حالت گازی پایدار بوده و شكاف باند بزرگی دارد. مشابه اغلب كشفیات بزرگ علمی دیگر، فلورنها نیز به طور تصادفی كشف شدند. در سال 1985 كروتو و اسمالی با نتایج عجیبی در طیف جرمی كربن تبخیر یافته روبرو شدند. در پی این حادثه فلورنها كشف شدند و پایداری آنها در حالت گازی اثبات گشت. اولین مشاهدات فلورنها در طیف نگاری جرمی غیرمنتظره بود. اولین روش تولید انبوه توسط كرچمر[16] و هافمن[17] برای سالها، قبل از پی بردن به آنكه این روش فلورن تولید میكند، استفاده میشده است.
جستجو برای دیگر فلورنها نیز آغاز شد و در سال 1991 نانولولههای كربنی توسط ایجیما و همكارانش كشف شدند. كشف نانولولههای كربنی توسط ایجیما در مادهی حل نشدنی لولههای گرافیتی سوخته شده در دودهی حاصله از تخلیهی قوس الكتریكی دو میلهی كربنی، سرچشمهی این همه، همهمهی امروزی در مورد نانولولههای كربنی است. این یك كشف اتفاقی دیگر در ارتباط با فلورنها بود، هرچند برای تولید فلورنها، روش تخلیهی قوس الكتریكی به خوبی شناخته شده بود. از آن پس محققین زیادی در سرتاسر جهان به مطالعه و بررسی این نانولولهها مشغولند.
به نظر میرسد، درست است كه بگوییم نانولولهها به طرز غیرمترقبهای كشف شدهاند. ولیكن در یك مقاله كه توسط ابرلین[18]، اندو[19] و كویاما[20] در سال 1976 چاپ شد، فیبرهای توخالی كربنی در ابعاد نانومتری به روش رشد بخار، به وضوح نشان داده شده بودند. همچنین در سال 1987، در آمریكا یك اختراع به نام جورج تنت[21] برای تولید فیبرهای مجزای استوانهای كربن با قطری بین 5/3 تا 70 نانومتر و طولی حدود 102 برابر قطر آن ثبت شد. اخیراً، اغلب، اعتبار كشف نانولولههای كربنی را به اندو می دهند و اعتبار شفاف سازی ساختار نانولولهها به ایجیما داده میشود. یك منظر از ساختار نانولولههای كربنی، ساختار یك بعدی و درون تهی آنها است. ساختار یك بعدی آنها بسیار مورد توجه فیزیكدانها است، زیرا امكان آزمایشات در فیزیك كوانتوم یك بعدی را برای آنها فراهم میسازد. ساختار درون تهی آنها هم بسیار مورد توجه شیمیدانها است، زیرا امكان دربرگیری مولكولها، واكنش در فضای محصور، و رهاسازی كنترل شدهی مولكولها برای مصارفی همچون رساندن دارو به بدن را ایجاد میكند ]1[ .
1-3 تاریخچه
در اینجا در یک نگاه به تاریخچه اتفاقات مهم در زمینه نانوفناوری و به خصوص نانولوله های کربنی می پرد از یم ]1[ :
1952
1976
1979
1985
1987
1991
1993
1998
2001
2002
2003
2004
2005
قیمت فایل فقط 10,900 تومان
برچسب ها : نانولوله های کربنی , خواص مکانیکی , محیط پیوسته , تعادل انرژی , اجزاء محدود , ورق گرافیتی تک لایه , ماتریس سختی